Using ligand-induced conformational change to screen for compounds targeting G-protein-coupled receptors.

Authors: O'Dowd BF, Alijaniaram M, Ji X, Nguyen T, Eglen RM, George SR.
Publisher/Year: J Biomol Screen. 2007 Mar;12(2):175-85. Epub 2007 Feb 8.
Pub Med ID/Journal ID: PMID:17289935


The authors describe a novel drug strategy designed as a primary screen to discover either antagonist or agonist compounds targeting G-protein-coupled receptors (GPCRs). The incorporation of a nuclear localization sequence (NLS, a 5 amino acid substitution), in a location in helix 8 of the GPCR structure, resulted in ligand-independent receptor translocation from the cell surface to the nucleus. Blockade of the GPCR-NLS translocation from the cell surface was achieved by either antagonist or agonist treatments, each achieving their result in a sensitive concentration-dependent manner. GPCR-NLS translocation and blockade occurred regardless of the identity of the G-protein-coupling, and thus this assay is also ideally suited for identification of compounds targeting orphan GPCRs. The GPCR-NLS trafficking was visualized by fusion to fluorescent detectable proteins. Quantification of this effect was measured by determining the density of cell surface receptors, using enzyme fragment complementation in a manner suitable for high-throughput screening. Thus, the authors have developed a cellular assay for GPCRs suitable for compound screening without requiring prior identification of an agonist or knowledge of G-protein-coupling.