A novel insulinotropic mechanism of whole grain-derived γ-oryzanol via the suppression of local dopamine D2 receptor signaling in mouse islet.

Authors: Kozuka C, Sunagawa S, Ueda R, Higa M, Ohshiro Y, Tanaka H, Shimizu-Okabe C, Takayama C, Matsushita M, Tsutsui M, Ishiuchi S, Nakata M, Yada T, Miyazaki JI, Oyadomari S, Shimabukuro M, Masuzaki H.
Publisher/Year: Br J Pharmacol. 2015 Jul 3.
Pub Med ID/Journal ID: PMID:26140534

Abstract

BACKGROUND AND PURPOSE:

γ-Oryzanol, derived from unrefined rice, attenuated the preference for dietary fat in mice, by decreasing hypothalamic endoplasmic reticulum stress. However, no peripheral mechanisms, whereby γ-oryzanol could ameliorate glucose dyshomeostasis were explored. Dopamine D2 receptor signalling locally attenuates insulin secretion in pancreatic islets, presumably via decreased levels of intracellular cAMP. We therefore hypothesized that γ-oryzanol would improve high-fat diet (HFD)-induced dysfunction of islets through the suppression of local D2 receptor signalling.

EXPERIMENTAL APPROACH:

Glucose metabolism and regulation of molecules involved in D2 receptor signalling in pancreatic islets were investigated in male C57BL/6J mice, fed HFD and treated with γ-oryzanol . In isolated murine islets and the beta cell line, MIN6 , the effects of γ-oryzanol on glucose-stimulated insulin secretion (GSIS) was analysed using siRNA for D2 receptors and a variety of compounds which alter D2 receptor signalling.

KEY RESULTS:

In islets, γ-oryzanol enhanced GSIS via the activation of the cAMP/PKA pathway. Expression of molecules involved in D2 receptor signalling was increased in islets from HFD-fed mice, which were reciprocally decreased by γ-oryzanol. Experiments with siRNA for D2 receptors and D2 receptor ligands in vitro suggest that γ-oryzanol suppressed D2 receptor signalling and augmented GSIS.

CONCLUSIONS AND IMPLICATIONS:

γ-Oryzanol exhibited unique anti-diabetic properties. The unexpected effects of γ-oryzanol on D2 receptor signalling in islets may provide a novel; natural food-based, approach to anti-diabetic therapy.