

Ion Channel Drug Discovery – Recent Advances in Novel Non-Opioid Pain Research

John Gilchrist, Ph.D., Principal Scientist Latigo Biotherapeutics Inc.

James Costantin, Ph.D., Scientific Market Development Manager – Ion Channels Eurofins DiscoverX[®]

eurofins

DiscoverX

DiscoverX

1. Ion Channels in Drug Discovery and Development

- The Pain Pathway and Current Therapeutics
- 2. Case Study "LTGO-33 Is a Novel Nav1.8 Inhibitor"
 - Presented by John Gilchrist Latigo Biotherapeutics Inc.
- 3. Eurofins DiscoverX[®] Ion Channel Products
- Capabilities, Stable Cell Lines, and Ready-to-assay Cells
- 4. Summary and Conclusions

Ion Channel Drug Discovery – Recent Advances in Novel Non-Opioid Pain Research

Eurofins DiscoverX[®] a Global Leader in Cell-based Assays for Screening, and Profiling

eurofins DiscoverX

Accelerating Breakthroughs from Discovery to Delivery

25+ Years of Experience Building Cell-based Assays

Fremont, California Poitiers, France Shanghai, China		Industry's Largest Cell- based Assay Portfolio	Target Discovery
		10+ Druggable Target	Hit Screening
			Lead Optimization
		60+ Assays	Safety Studies
🛟 eurofins	Functional Kinases	Stable Cell Lines	Internally Validated
Pure & Native Full Length	GPCRs	Ready-to-Assay	>30 Billion
Membrane Proteins		Membrane Preps	Data Points

Ion Channels in Drug Discovery and Development

- Over 400 genes encode for ion channels and their accessory subunits in humans
 - They are ubiquitous proteins found in all cell types
- Ion channels are involved in normal physiological processes such as the transmission of pain signals in the central and peripheral nervous system
- Therapeutic intervention in normal or aberrant ion channel function can lead to effective treatment of human diseases, including the treatment of pain disorders

eurofins

Ion Channels in Drug Discovery and Development

Channelopathies

Mutations in ion channel genes or their related proteins cause diseases (channelopathies) that range from mild to severe, affecting the nervous, cardiovascular and respiratory systems, as well as causing endocrine, kidney and immunerelated diseases

Image source: Front. Pharmacol., 09 May 2016, Vol.7. https://doi.org/10.3389/fphar.2016.00121

eurofins

DiscoverX

The Pain Pathway and Current Therapeutics

The pain pathway, opioids, and the need for non-addictive analgesics

The Pain Pathway

- Pain stimuli are detected by nociceptors in the peripheral nervous system
 - Signals are then transmitted to the Central Nervous System (CNS) via Dorsal Root Ganglion (DRG) neurons
- Sodium channels in DRG neurons initiate trains of action potentials in response to the incoming peripheral nerve signals
 - This transmits the pain signal to the brain where it is perceived

eurofins

DiscoverX

(Daradia, The Pain Clinic <u>https://daradia.com/pain-pathway/</u>

The pain pathway, opioids, and the need for non-addictive analgesics

- Inhibition of Nav1.8 ion channels in DRG neurons should be an effective analgesic by reducing transmission of the pain signal from DRG neurons to the brain
- Highly addictive opioid drugs act by depressing neuronal excitability in the CNS by reducing the activity of Ca²⁺ channels and increasing the activity of K⁺ channels
- Development of an effective inhibitor of Nav1.8 ion channels could lead to a nonaddictive analgesic

eurofins

DiscoverX

Adapted from: *Acta Biochim Biophys Sin*, 2016, 48(2), 132–144. doi: 10.1093/abbs/gmv123

DiscoverX

LTGO-33 Is a Novel $Na_v 1.8$ Inhibitor

John Gilchrist, Ph.D. Latigo Biotherapeutics Inc. 15 May 2024

Nav 1.8 Is a Validated Target for Analgesia

Na_v1.8 is a voltage-gated sodium channel found in nociceptive DRG sensory neurons

Ahern, Christopher A., et al. "The hitchhiker's guide to the voltage-gated sodium field channel galaxy." *Journal of General Physiology* 147.1 (2016): 1-24.

Genetically- and pharmacologically-validated as a target for pain

Faber, Catharina G., et al. "Gain-of-function Nav1. 8 mutations in painful neuropathy." *Proceedings of the National Academy of Sciences* 109.47 (2012): 19444-19449.

LTGO-33 Is a Potent Na_v1.8 Inhibitor

LTGO-33 Inhibition Is State-Independent

No preference for inhibition of

resting vs inactivated state

LATIGO BIO

No shift in voltagedependence of activation

Webinar Sponsor sponsor DiscoverX

LTGO-33 Is Isoform- and Species-selective

Webinar Sponsor Sponsor

LTGO-33 Inhibits Action Potentials in hDRG Neurons

TTX-free to simulate physiological conditions

baseline (10 Hz)	

200 nM LTGO-33 (10 Hz)	
	Ш

LTGO-33 is effective at decreasing AP firing at a higher frequency (10 Hz) at $2x hDRG IC_{50}$

Webinar Sponsor sponsor

VSDII Is Required for LTGO-33 Activity

 rNa_v 1.8 (with reduced LTGO-33 sensitivity) used as host for gain-of-function domain chimeras

DII (IC₅₀ 74 nM) and VSDII (IC₅₀ 84 nM) chimeras inhibited by LTGO-33, all others IC₅₀ >30 μ M

Comparable potency on DII and VSDII chimeras suggests VSD sufficient, pore unnecessary

Residues in S1, S3, and S4 Critical for LTGO-33 Activity

Alanine scan conducted through regions of dissimilarity between human and rat

Amino acids showing >5x decrease in potency found in S1 and S3b-S4 loop

Webinar

Sponsor

🔅 eurofins

DiscoverX

LTGO-33 Interaction Site in Extracellular VSDII

side view

S3

Important residues found in outer portion of VSDII – similar to ProTx-II binding site

Webinar **curofins**

DiscoverX

Sponsor

Disinhibition and a Gating Model

A basic model proposes LTGO-33 stabilizes the VSDII deactivated (down) state to prevent channel activation

Depolarization can relieve Na_v1.8 inhibition by LTGO-33, akin to ProTx-II

LATIGO BIO

LTGO-33 Inhibits Closed but not Activated Channels

18

Webinar

Sponsor

🔅 eurofins

DiscoverX

Webinar 🔅 eurofins Sponsor DiscoverX

LTGO-33 Inhibition Can Be Relieved by Depolarization

LTGO-33 disinhibition is complete within a 1 second depolarization

LTGO-33 reinhibition occurs rapidly

 $D \rightarrow DL$

in the deactivated state

I/I vehicle 0 mV -80 mV 5 ms

LTGO-33 is relatively slower to dissociate from deactivated VSDII

Webinar Sponsor Sponsor

LTGO-33 Exhibits Minimal Reverse-use Dependence

AP waveform applied to ND7/23 cells transfected with hNa_v1.8, conductance plotted

Use-dependent inhibition (UDI) observed at higher frequencies

Curve-fitting approach subtracted UDI from LTGO-33 treated cells – minimal reverse-use dependence observed up to 40 Hz

LTGO-33 Inhibits Nav1.8 Harboring Variants Associated with Pain Disorders

Na_v1.8 variants associated with pain disorders located outside of VSDII do not affect LTGO-33 pharmacology

Webinar **is eurofins**

DiscoverX

Sponsor

Conclusions

- LTGO-33 is a potent, selective Na_v1.8 inhibitor that blocks AP firing in an *in vitro* human DRG neuronal model
- Unlike prior published Na_v1.8 inhibitors, LTGO-33 shows no preference for inhibiting from inactivated state
- LTGO-33 engages the channel at a novel site in VSDII similar to peptide spider toxins
- LTGO-33 is effective in inhibiting Na_v1.8 variants associated with pain disorders

Webinar Sponsor sponsor DiscoverX

Acknowledgements

Latigo Team	External Activities	
Victoria Jiang Nien-Du Yang	AnaBios Neuroservice USA Charles Biyor Labs	Find t
Shanti Amagasu	B'SYS GenScript	
Tina Holt		The h (CYL3

LATIGO BIC

Find the paper at *Molecular Pharmacology*!

The hNa_V1.8/ β 1 (CYL3025) and rNa_V1.8 (CYL3050) stable cell lines are products of Eurofins DiscoverX.

DiscoverX

1. Ion Channels in Drug Discovery and Development

- The Pain Pathway and Current Therapeutics
- 2. Case Study "LTGO-33 Is a Novel Nav1.8 Inhibitor"
 - Presented by John Gilchrist Latigo Biotherapeutics Inc.
- 3. Eurofins DiscoverX[®] Ion Channel Products
- Capabilities, Stable Cell Lines, and Ready-to-assay Cells
- 4. Summary and Conclusions

Ion Channel Drug Discovery – Recent Advances in Novel Non-Opioid Pain Research

Eurofins DiscoverX[®] a Global Leader in Ion Channel Assays & eurofins for Drug Discovery

DiscoverX

Accelerating Breakthroughs from Discovery to Delivery

Ion Channel Stable Cell Lines Used for Drug Discovery for 15+ Years

Fremont, California Lyon, France		65+ Ion Channel Assavs	Target Discovery
		Stable Cell Lines	Hit Screening
		Ready-to-Assay Frozen	Lead Optimization
		Cells	Safety Studies
🔅 eurofins 🛛	Functional Kinases,		
CALIXAR	GPCRs and Ion Channels	Membrane Preps	Validation Data by
Reconstituted Full Length Membrane and Soluble	Nanodiscs, Proteoliposomes,	Membrane Trafficking	Available for Cell

PrecisION[™] Ion Channel Cell Lines

- High-quality cell lines for target discovery, hit screening, lead optimization, and safety studies
- Suitable for manual and automated electrophysiology and fluorescence imaging studies
- Available as continuous culture and now in a ready-to-assay (RTA) format

Eurofins DiscoverX is now the home and exclusive provider of PrecisION Ion Channel cell lines

- Eurofins DiscoverX, part of Eurofins Discovery, the products company and the leading provider of cell lines, cell-based assays, and enzymes for drug discovery and development
- PrecisION ion channel stable cell lines portfolio was acquired through the acquisition of Millipore (EMD Millipore/Merck Millipore) after a series of smaller acquisitions

eurofins

DiscoverX

Eurofins DiscoverX[®] Automated Patch Clamp

Cell line production, marketing, and technical support

- Quality control (QC) validation of existing Eurofins DiscoverX PrecisION[™] cell lines at the Fremont, CA lab facility
- Development and QC validation of frozen RTA PrecisION channel cell lines
- Validation of custom ion channel targets through custom development capabilities program
- Expansion of our Custom Development Capabilities program into rare disease targets
 - Channelopathy variants and wild type controls

Nanion SyncroPatch 384i

Eurofins DiscoverX[®] Ion Channel Products

eurofins

DiscoverX

PrecisION[™] channel cell lines

hERG (K ⁺)	K ⁺ Channels	K ⁺ Channels	Ca ²⁺ Channels	Ligand–gated Channels
hERG-CHO hERG-HEK	K _V 1.1-CHO K _V 1.2-CHO K _V 1.3-CHO	K_V 4.3/KChIP1-CHO K_V 4.3/KChIP2-HEK K_V 7.2/K $_V$ 7.3-CHO	$\begin{array}{l} \text{Ca}_{\text{V}}\text{1.2} \; \alpha_{1\text{C}}/\beta_{2\text{a}}/\alpha_{2}\delta_{1} \\ \text{Ca}_{\text{V}}\text{2.2-HEK} \\ \text{Ca}_{\text{V}}\text{3.2-HEK} \end{array}$	nAChR $\alpha_1/\beta_1/\delta/\epsilon$ -HEK nAChR α_3/β_4 -HEK nAChR α_4/β_2 -HEK
Na ⁺ Channels	К _V 1.4-СНО К _V 1.5-СНО К _V 1.6-СНО	$K_V7.3/K_V7.3$ -CHO $K_V7.4$ -HEK $K_V7.4/K_V7.5$ -HEK	Other Channels	GABA _A $\alpha_1/\beta_3/\gamma_2$ -HEK GABA _A $\alpha_3/\beta_3/\gamma_2$ -HEK
Na _V 1.1-HEK Na _V 1.2-CHO Na _V 1.3-CHO Na _V 1.4-HEK Na _V 1.5-HEK Na _V 1.6-HEK	$K_V 1.7$ -CHO $K_V 1.8$ -CHO $K_V 12.2$ -HEK $K_V 2.1$ -CHO $K_V 2.1/K_V 9.2$ -CHO $K_V 3.1$ -CHO	K _{ir} 2.1-HEK K _{ir} 6.2/SUR2A-HEK KNCQ1/hminK-CHO HCN Channels	ASIC3-HEK CFTR-HEK TRPA1-HEK TRPV1-HEK TRPV3-HEK TRPV4-HEK	$\begin{array}{l} GABA_{A} \; \alpha_4/\beta_3/\gamma_2\text{-}HEK\\ GABA_{A} \; \alpha_5/\beta_3/\gamma_2\text{-}HEK\\ GABA_{A} \; \alpha_6/\beta_3/\gamma_2\text{-}HEK\\ GIyRA1\text{-}HEK\\ GluR6\text{-}HEK \end{array}$
Na _V 1.7-HEK Na _V 1.8/ β 1-HEK Rat Na _V 1.8-ND7-23	K _V 3.2-CHO K _V 3.3-CHO K _V 4.2/KChIP2-CHO	HCN1-HEK HCN2-HEK HCN3-HEK HCN4-CHO	CRO Services are perforsister company Eurofins	ormed on these cell lines by our s-Discovery in St. Charles, MO rofins

Human origin unless otherwise noted

eurofins DiscoverX

Benefits of Ready to Assay (RTA) Cells

- RTA cells eliminate the need for continuous cell culture
- Eliminates inconsistencies that can be inherent in cell line cultures due to:
 - Different cell culture technicians
 - Different time windows of stable cell lines in culture
- RTA cells are frozen down at optimal expression
- Every production lot is QC validated

New PrecisION RTA cells Coming soon!

Cardiac Safety Panel:

- hERG-CHO (CYL3038RTA)
- Nav1.5-HEK (CYL3004RTA)
- Cav1.2 (CYL3051RTA)

Provided with a Certificate of Analysis that includes electrophysiology data and pharmacological characterization for each lot produced

Pain Targets:

- Nav1.8 (CYL3025RTA)
- And other popular therapeutic pain targets

Let us know your favorites!

New PrecisION[™] Ready-To-Assay Cells

🛟 eurofins

DiscoverX

In support of the new FDA CiPA guidelines, Eurofins DiscoverX[®] is launching the Cardiac Safety Panel PrecisION stable cell lines in a frozen Ready-to-assay (RTA) format

Blockade of Nav1.5 and/or Cav1.2 can offset hERG blockade and render the drug safe.

FDA = US Food and Drug Administration; CiPA = Comprehensive In Vitro Proarrhythmia Assay

Translational Models and Tools to Reduce Clinical Trials and Improve Regulatory Decision Making for QTc and Proarrhythmia Risk (ICH E14/S7B Updates)

David G. Strauss^{1,*}, Wendy W. Wu¹, Zhihua Li¹, John Koerner² and Christine Garnett³

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 109 NUMBER 2 | February 2021 doi:10.1002/cpt.2137

Current Voltage (I/V) Relationship and Tetracaine the eurofins Pharmacology of PrecisION™ Nav1.5 Ready-To-Assay Cells

Raw Ionic Currents

DiscoverX

Peak Current over time (I-t plot)

Nav1.5-HEK		
Part # Channel Mean Success		
CYL3004	Nav1.5	74.0% (n = 2 runs)
CYL3004-RTA	Nav1.5-RTA	71.7% (n = 2 runs)

- Stable RTA currents are obtained that are sensitive to tetracaine
- Success rates are similar stable cell line

Current Voltage (I/V) Relationship and Cisapride Pharmacology of hERG-CHO Ready-To-Assay Cells

Raw Ionic Currents

eurofins

DiscoverX

•••• •••

Peak Current over time (I-t plot)

hERG-CHO		
Part # Channel Mean Success		
CYL3038	hERG Stables	87.5% (n = 2 runs)
CYL3038-RTA	hERG RTA's	83.0% (n = 2 runs)

- Stable RTA currents are • obtained that are sensitive to cisapride
- Success rates are similar • stable cell line

PrecisION[™] Nav1.8 and Cav1.2 Ready-To-Assay Cells

eurofins

DiscoverX

Stable RTA currents are obtained and the success rates are similar stable cell line

Summary and Conclusions

- Analgesics designed to inhibit the activity of the Nav1.8 channel in the pain pathway are promising non-addictive alternatives to opioid analgesics
- Latigo has presented compelling evidence that LTGO-33 is a novel Nav1.8 inhibitor
- Eurofins DiscoverX[®] is in the process of converting selected stable cell lines into readyto-assay format include cardiac safety and therapeutic pain targets

Learn more at discoverx.com/ target-class/ion-channel/

34

eurofins DiscoverX