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Voltage-Gated Ca2+ Channels Introduction

The voltage-gated Ca2+ channel family consist of ten channels that have been characterized in mammals. 

Calcium channels are key transducers of membrane potential changes into local intracellular Ca2+ influx that 

initiates many different physiological events. Ca2+ influx regulates intracellular processes including secretion, 

neurotransmission, muscle contraction, and gene expression in many different cell types [1-2].

Ca2+ channels have been well-characterized and are complex proteins comprised of four to five distinct 

subunits [1,3-4]. The pore forming α1 subunit is the largest subunit (190-250 kD).  In addition to the pore, the 

α1 subunit contains the voltage sensor and gating functionality, and the majority of binding sites for toxins, 

drugs and second messengers.  Ca2+ channels also consist of an intracellular β subunit, a transmembrane, a 

α2δ subunit complex, and a transmembrane γ subunit [4].
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Voltage-Gated Ca2+ Channel Classification and 

Nomenclature

Early studies of Ca2+ currents revealed diverse pharmacological and electrophysiological properties.  Letter designations 

evolved for the different classes of Ca2+ currents [5-6], as well as low voltage activated (LVA) and high voltage activated 

(HVA) categories.  L-type HVA Ca2+ currents require a depolarization above ~-40 mV for activation, are long-lasting (little 

inactivation), and are blocked by dihydropyridines, phenylalkylamines, and benzothiazepines [7-8]. L-type Ca2+ currents 

are the predominant Ca2+ channel in endocrine and muscle cells, where they initiate secretion and contraction.  Other 

primarily neuronal HVA Ca2+ channel types that have been identified are N-type, P/Q-type, and R-type [7,9-10]. They are 

blocked by specific toxins from spider and snail venoms and relatively insensitive to L-type Ca2+ blockers [11].   T-type 

Ca2+ are LVA currents activated by depolarized voltages above about -60 mV, the currents produced inactivate, T- stands 

for transient currents [12-13]. They are resistant to both the L-type antagonists as well as the snake and spider toxins 

used to define HVA channels. Physiologically T-type channels are expressed in a wide variety excitable cells, where they 

are involved in controlling the patterns of repetitive firing, and in the kinetics of the action potential.

In 1994, a new nomenclature was adopted in which the α1 pore forming subunits were referred to as α1S for the HVA 

calcium channel in skeletal muscle, and α1A through α1E for the other HVA channels [14]. In 2000, a newer nomenclature 

was adopted similar to that adopted previously for potassium channels nomenclature [15-16]. The new nomenclature for 

voltage-gated Ca2+ channels is CaV for the permeating ion and voltage regulation. The numerical identifier corresponds 

to the CaV channel α1 subunit gene 3 subfamilies (e.g. CaV1), followed by the temporal appearance in the literature of the 

α1 subunit within that subfamily (e.g. CaV1.1). The α1 subunit amino acid sequences are more than 70% identical within a 

subfamily, and less than 40% identical across the subfamilies.
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Ca2+ Channel Regulation and Channelopathies

Ca2+ channels are regulated by G protein βγ subunits, phosphorylation by several protein kinases, 

calmodulin, Ca2+ binding proteins, and SNARE proteins, [2,17-21]. These are transient protein-protein 

interactions, stable interactions with members of the RGK-family of Ras-like GTP-binding proteins also 

occur that regulate Ca2+ channel localization and expression by binding to the intracellular β subunit [22]. 

Voltage-gated Ca2+ channel mutations cause many inherited channelopathies [23]. Hypokalemic periodic 

paralysis in skeletal muscle has been linked to CaV1.1 channel mutations [17].  Neuronal and cardiac 

CaV1.2 channels mutations that cause loss of voltage-dependent inactivation lead to cause Timothy 

Syndrome which includes cardiac arrhythmia, autism, and developmental abnormalities [24-26]. CaV1.3 

loss of function mutants cause sinoatrial node dysfunction and deafness [29], gain of function of CaV1.3 is 

implicated in autism and severe neurodevelopmental disorders, as well as primary aldosteronism [30].  

Gain of function in CaV2.1 channels has been implicated in causing migraine headaches, and other 

mutations of CaV2.1 cause spinocerebellar ataxia type 6 [31-33].  Congenital stationary night blindness has 

been linked to loss of function mutations of CaV1.4 channels [34-35]. Other calcium channelopathies

include epileptic encephalopathies have been linked to CaV2.3 and childhood-onset cerebellar ataxia linked 

to CaV3.1 [36-37]
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CaV1.2 α1C/β2a/α2δ1 (CYL3051)

Cav1.2 α1C/β2a/α2δ1 currents expressed in HEK-293 cells measured in the whole cell mode. Left Panel: Raw 

ionic current traces for the current-voltage (I/V) plot shown in the right panel.  Currents were elicited by stepping from 

a holding potential -100 mV to -60 mV then increasing in 10 mV increments to +60 mV.. (SyncroPatch 384i Data)
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CaV1.2

Cav1.2 currents expressed in HEK-293 cells. Success rates of 59.1% was achieved prior to the addition of 

nitrendipine (wells with current smaller than -75 pA and seals below 300 MΩ are filtered out).  (SyncroPatch 384i Data) 
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CaV1.2

Pharmacological blockade of Cav1.2 currents by nitrendipine. Left Panel: Raw ionic current traces prior to 

(black trace) and after the addition of 200 µM nitrendipine (blue trace). Currents are elicited by a step from the 

holding potential of -100 mV to -10 mV. Right Panel: Current-Time (I/t) plot of currents prior to the addition of 

200 µM nitrendipine, and then blockade by nitrendipine added at the start of the blue shaded portion of the I/t 

plot. (SyncroPatch 384i Data) 
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CaV1.2

Dose response curve for the blockade of Cav1.2 by nitrendipine. In this 

experiment we obtained an IC50 of 263 nM. (SyncroPatch 384i Data) 
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CaV2.2 α1B/β3/α2δ1 (CYL3054)

hCav2.2 α1B/β3/α2δ1 Current-Voltage (I/V) Relationship and Voltage Dependence of Activation: Left: The voltage was stepped from a holding potential of -

90 mV to voltages of -60 mV to +52 mV for 40 ms every 500 ms. Peak currents during the 40 ms step are plotted against the relevant test step. Currents were 

recorded using 10 mM Ba2+ external solution (n=15 cells).  Right: Using the voltage protocol described above (Figure 1), and subtracting the currents from the 

corresponding currents evoked in the presence of 10 μM Cd2+, it was possible to measure hCav2.2 tail current amplitudes free from contaminating currents and 

capacity currents (Figure 2).  Cd2+ Subtraction: Example currents elicited by 40 ms steps to various test potentials. A. Currents obtained pre-Cd2+ addition, B. 

Currents obtained after addition of 10 mM Cd2+, C. Current values obtained after Cd2+ subtraction, D. Tail currents, E. Voltage protocol. (IonWorks HT Data)
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CaV2.2

hCAV2.2 Current Activation and Inactivation: Left: The instantaneous currents, evoked on repolarization to the holding potential (-90 mV) following the 

40 ms pre-pulse steps were measured. Currents were normalized to the current evoked with a pre-pulse potential of +52 mV and plotted against pre-pulse 
potential voltages. A Boltzmann fit of the data yielded a V½ of activation of +13 ± 1 mV (mean ± SEM). Inset: Voltage protocol. Right: Currents evoked by 

the test pulse were normalized to the current evoked by a test pulse following a pre-pulse of at -100 mV and plotted against voltage. A Boltzmann fit of the 
data yielded a V½ of inactivation of -51 ± 2 mV and a slope (k) of 8.5 ± 0.7 mV (n=9), mean ± SEM. Inset: Voltage protocol. (IonWorks HT Data)
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CaV2.2

hCaV2.2 Pharmacology: The affinity of the highly selective N-type calcium blocking agent ω-conotoxin GVIA (ω-CTx GVIA - a peptide toxin 

from the snail Conus geographus), was compared to CdCl2 and the dihydropyridine L-type calcium-channel blocker nitrendipine. Confirming 

the selective expression of hCav2.2 currents, nitrendipine was essentially without effect whereas the snail toxin potently blocked the current 

(IC50 = 18.4 nM). Responses are normalised to the currents obtained without the addition of blocker (IonWorks HT Data)
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CaV3.2 (CYL3075)

hCaV3.2 Raw Data Currents and Current-Voltage (I/V) Relationship: Left: CaV3.2 currents were evoked by 100 ms

depolarizing voltage pulses stepped in 10 mV increments from -90 mV to +50 mV from a holding potential of –90 mV once every 

5 seconds. Scale bars represent 50 ms and 500 pA. Right: Current-voltage relationship of Cav3.2. The mean peak currents 

evoked during the 100 ms voltage step are plotted against the step potential in millivolts (n= 4) (Manual Patch Clamp Data)

BACK



Trusted Products to e    pedite Your Discovery & Development – Advance Confidently

CaV3.2

hCaV3.2 Voltage Dependence of Activation and Inactivation: Left: Conductance was normalized to conductance at 0 mV and plotted against membrane voltage. Data 
was described with a Boltzmann equation with a V½ of activation of -36.8 ± 0.3 mV and slope (k) of 6.8 ± 0.3 mV. Values represent means ± SEM (n = 4). The voltage 

protocol used is shown (inset). Scale bars represent 20 ms and 20 mV.  Right: The voltage-Dependence of inactivation. The voltage was first stepped to various voltages 

from -100 mV to -25 mV in 5 mV increments for 1s from a holding potential of -90 mV. After each pre-pulse voltage step there was a subsequent step to -30 mV (to 

measure channel availability) followed by a step to -90 mV. Peak hCav3.2 currents at -30 mV were normalized to maximal current, evoked with a pre-pulse potential of -90 

mV, and plotted against the relevant pre-pulse potential voltage (Figure 3). This could be described by a Boltzmann equation giving an estimated V½ of inactivation was -
65.9 ± 0.2 mV and a slope (k) of 4.7 ± 0.2 mV (n = 4). The voltage protocol used is shown (inset). Scale bars represent 250 ms and 10 mV. (Manual Patch Clamp Data)
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CaV3.2

Blockade of hCaV3.2 currents by Kurtoxin: Left: Typical traces showing the effect of 350 nM kurtoxin. Calcium currents are shown before (black trace) 

and in the presence of kurtoxin (green trace). The cells were held at a holding potential of –90 mV and then stepped to -30 mV for

100 ms. Scale bars represent 100 ms and 500 pA. Right: Mean inhibition by 350 nM kurtoxin. Cells were stepped to a potential of –30 from a holding 

potential of -100 mV. The amplitude of the current is expressed as relative current compared to the control response (n = 3) (Manual Patch Clamp Data)  
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CaV3.2

Blockade of hCaV3.2 Currents by Mibefradil: Left: Typical traces showing the effect of 1.2 μM mibefradil. Calcium currents are shown before (black trace) 

and in the presence of mibefradil (red trace). The cells were held at a holding potential of –100 mV and then stepped to -30 mV for 300 ms. Scale bars 

represent 100 ms and 500 pA. Right: Dose-response curve of mibefradil on hCav3.2. Cells were stepped to a potential of –30 from a holding potential of -

100 mV. The amplitude of the current is expressed as relative current compared to the control response. These values were plotted against concentration to 
obtain the dose-response curve. This could be described by a Hill equation with an estimated IC50 value of 1.3 ± 0.1 μM (n = 10 – 39) (IonWorks HT Data)
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CaV3.2

Effect of Nickel on hCaV3.2 Currents: Left: Typical traces showing the effect of 3.7 μM nickel. Calcium currents are shown before (black trace) 

and in the presence of nickel (blue trace). The cells were held at a holding potential of –100 mV and then stepped to -30 mV for 300 ms. Scale 

bars represent 100 ms and 500 pA. Right: Mean inhibition by 3.7 μM nickel. Cells were stepped to a potential of –30 from a holding potential of -

100 mV. The amplitude of the current is expressed as relative current compared to the control response (n = 39) (IonWorks Quattro Data)
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CaV3.2

hCaV3.2 Stability of Expression Over Passage: The upper panel shows the percentage of cells expressing a mean 

peak tail current >500 pA at -30 mV at cell passages 4, 10, 16 and 27. The lower panel shows the mean current 
amplitude (mean ± SEM, red circles) and the number of these cells (numbers above red circles) (IonWorks HT Data).
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