

PRODUCT DATASHEET

ChemiBrite[™] EP₃ Prostanoid Receptor Stable Cell Line

CATALOG NUMBER: HTS092L

CONTENTS: 2 vials of mycoplasma-free cells, 1 mL per vial. **STORAGE**: Vials are to be stored in liquid N₂.

BACKGROUND

ChemiBrite cells express a novel variant of clytin, a calcium-activated photoprotein, to enable sensitive luminescent detection of ligand-induced calcium flux. The ChemiBrite version of clytin contains a mutation that increases its affinity for calcium to a level that permits detection of cytosolic calcium in many cells with greater sensitivity than other photoproteins targeted to the mitochondria. Luminescent calcium assays offer several advantages over fluorescent calcium assays including increased sensitivity and lack of interference from fluorescent compounds.

Prostanoids are a series of arachidonic acid metabolites produced by the action of cyclooxygenase and subsequently by isomerases and synthases. Cells rapidly secrete prostanoids after synthesis, whereupon the prostanoids bind to a family of 8 GPCRs to exert their biological effects (Narumiya and FitzGerald, 2001). The prostaglandin PGE₂ causes pain, vasodilatation, immunosuppression of T cells, bone resorption and promotion of carcinogenesis. Four related GPCRs, EP₁, EP₂, EP₃ and EP₄, each bind to PGE₂, but the different G protein coupling status of each receptor leads to distinct biological effects. Further diversity is generated by alternative splicing; the human gene for EP₃ generates 9 alternatively- spliced mRNAs encoding 8 isoforms of EP₃ (Kotani *et al.*, 1997). These isoforms of EP₃ vary in sequence at their C-termini, and differ in their ability to couple to G_s , G_q or G_i (Kotani *et al.*, 1995). EP₃ receptor activity is required for fever induced by pyrogens, a response long attributed to prostaglandins by the antipyretic action of aspirin and other COX inhibitors (Ushikubi *et al.*, 1998). In animal models of allergy, PGE₂-mediated activation of EP₃ inhibits inflammation to counteract the allergy-promoting activity of PGD₂ (Kunikata *et al.*, 2005) Cloned EP₃ receptor and a promiscuous G protein to couple the receptor to the calcium signaling pathway. These stability tested cells are ready for luminescent analysis of agonists, antagonists and modulators at the EP₃ receptor.

USE RESTRICTIONS

Please see Limited Use Label License Agreement (Label License Agreement) for further details.

WARNINGS

For Research Use Only; Not for Use in Diagnostic Procedures Not for Animal or Human Consumption

GMO

This product contains genetically modified organisms. Este producto contiene organismos genéticamente modificados. Questo prodotto contiene degli organismi geneticamente modificati. Dieses Produkt enthält genetisch modifizierte Organismen. Ce produit contient organismes génétiquement des modifiés. Dit product bevat genetisch gewijzigde organismen. Tämä tuote sisältää geneettisesti muutettuja organismeja. Denna produkt innehåller genetiskt ändrade organismer.

Eurofins Pharma Bioanalytics Services US Inc. 15 Research Park Drive St Charles MO 63304 USA T |+1 844 522 7787 F |+1 636 362 7131 www.eurofins.com

APPLICATIONS

Calcium Flux Assays; Luminescent Mode and Fluorescent Mode

APPLICATION DATA

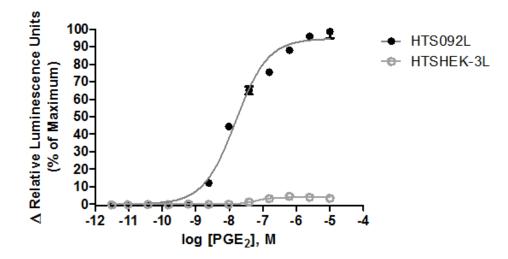


Figure 1. Representative data for activation of EP₃ receptor stably expressed in HEK293 cells induced by Prostaglandin E2 using a luminescent calcium flux assay. EP₃-expressing HEK293 cells were loaded with 10 μ M coelenterazine for 3 h at room temperature and calcium flux in response to the indicated ligand was determined on a Molecular Devices FLIPR^{TETRA}® with ICCD camera in 96-well format with a final concentration of 0.5% DMSO. Luminescence signal obtained in this experiment was 200,000 RLU (Relative Light Units) as measured by AUC (area under curve) for 80 s post agonist addition using the provided protocol. Similarly parental cells (catalog #: HTSHEK-3L) were tested to determine the specificity of the resulting signal.

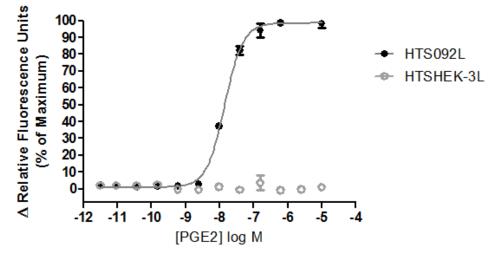


Figure 2. Representative data for activation of EP₃ receptor stably expressed in HEK293 cells induced by Prostaglandin E2 using a fluorescent calcium flux assay. EP₃-expressing HEK293 cells were seeded at 50,000 cells per well into a 96-well plate the following day the cells were loaded with a calcium dye. Calcium flux in response to the indicated ligand with a final concentration of 0.5% DMSO was determined on a Molecular Devices FLIPR^{TETRA}® with ICCD camera. Maximal fluorescence signal obtained in this experiment was 6,200 RLU as measured at 10 s post agonist addition. Similarly parental cells (catalog #: HTSHEK-3L) were tested to determine the specificity of the resulting signal.

Table 1. EC₅₀ values of EP₂-expressing HEK293 cells.

LIGAND	ASSAY	POTENCY EC ₅₀ (nM)	REFERENCE
Prostaglandin E2	Calcium Flux - Luminescence	15*	Eurofins Internal Data
Prostaglandin E2	Calcium Flux - Fluorescence	14	Eurofins Internal Data
* The cell line was te	sted and found to have equivaler	nt EC _{co} and signal at 1	3 and 6 weeks of continuous culture by

* The cell line was tested and found to have equivalent EC_{50} and signal at 1, 3 and 6 weeks of continuous culture by calcium flux luminescence. The Z' value, as defined with response to 10uM Prostaglandin E2 is 0.8.

CELL CULTURE

Table 2. Recommended Cell Culture Reagents (not provided)

Description	Component	Concentration	Supplier and Product Number
Basal Medium	DMEM F12	-	Millipore: DF041-B
	Fetal Bovine Serum (FBS)	10%	Gibco: 16000
	Non-Essential Amino Acids (NEAA)	1X	Millipore: TMS-001-C
Selection Medium	Basal Medium (see above)	-	
	Geneticin (G418)	400 µg/ml	Merck EMD: 345812
	Puromycin	1 ug/ml	Merck EMD: 400053
	Hygromycin	200 µg/ml	Merck EMD: 540411
Dissociation	Sterile PBS	-	Millipore: BSS-1006A
	0.05% Trypsin-EDTA	-	Millipore: SM-2002-C
CryoMedium	Basal Medium (see above)	40%	
	Fetal Bovine Serum (FBS)	50%	Gibco: 16000
	Dimethyl Sulfoxide (DMSO)	10%	Merck EMD: 317275

Cell handling

- 1. Upon receipt, directly place cells in liquid nitrogen storage. Consistent cryopreservation is essential for culture integrity.
- 2. Prepare Basal Medium. Prepare 37°C Water Bath. Thaw cells rapidly by removing from liquid nitrogen, and immediately immersing in a 37°C water bath, until 90% thawed. Immediately sterilize the exterior of the vial with 70% ethanol.
- 3. Add vial contents to 15 mL Basal Medium in T75 Tissue Culture Treated Flask. Gently swirl flask and place in a humidified, tissue culture incubator, 37°C, 5% CO₂.
- 4. 18-24 Hours Post–Thaw, all live cells should be attached. Viability of the cells is expected to be 60-90%, At this time, exchange Basal Medium with Selection Medium.
- 5. When cells are approximately 80% confluent, passage the cells. It is suggested that user expand culture to create >20 vial Master Cell Bank at low passage number. *Cells should be maintained at less than 80% confluency for optimal assay results.*
- 6. Cell Dissociation: Aspirate Culture Medium. Gently wash with 1x Volume PBS. Add 0.1x Volume Warm Trypsin-EDTA. Incubate 2 min, RT, until cells dislodge. *If cells do not round up, place in 37° C incubator for additional 2 min.* Neutralize Trypsin and collect cells in 1x Volume Basal Medium.
- 7. Seed Cells for expansion of culture. It is recommended that cell lines are passaged at least once before use in assays.

Table 3. Cell Culture Seeding Suggestions: User should define based on research needs.

Flask Size (cm ²)	Volume (mL)	Total Cell Number (x10 ⁶)	Growth Period (hrs)
T75	15	2.0	24
T75	15	1.0	48
T75	15	0.8	72
T150	30	4.0	24
T150	30	3.0	48
T150	30	2.0	72

ASSAY SETUP

Luminescence

Table 4. Settings for FLIPR^{TETRA}® with ICCD camera option

Option	Setting
Read Mode	Luminescence
Ex/Em	None/None
Camera Gain	280,000
Gate Open	100 %
Exposure Time	0.9 sec
Read Interval	1 sec.
Dispense Volume	50 µl (25 µl for 384-well)
Dispense Height	95 µl (50 µl for 384-well)
Dispense Speed	50 µl/sec
Expel Volume	0 µl
Analysis	Subtract Bias Sample 1

Table 5. Assay Materials (Not provided)

Supplier and Product Number
Invitrogen: 14025
EMD Millipore: TMS-003-C
Sigma: P8761
AAT Bioquest: 21080
Cayman: 14010
Corning: 3605/ 3574
Corning: 3904/ 3712
Promega: S2011

Assay Protocol – Luminescence

- 1. Dissociate Culture as Recommended. Collect in Basal Medium. Document Cell Count and Viability
- 2. Centrifuge the cell suspension at 190 x g for six min
- Remove supernatant. Gently resuspend the cell pellet in Basal Medium. It is suggested that end user optimize cell plating based on individual formats. (Default: Resuspend in volume to achieve 5x10⁵cells/ml (i.e, if collected 5e6 TC, ^{5e6/}_{5e5/ml} =10 mL volume)
- 4. Seed cell suspension into black, clear bottom plate (100 µL/well for 96-well plate). When seeding is complete, place the assay plate at room temperature for 30 min.
- 5. Move assay plate to a humidified 37°C 5% CO₂ incubator for 18-24 h.
- 6. Next day, prepare Assay buffer (HBSS, 20mM HEPES, pH 7.4) and Loading buffer (Assay buffer with 10μM coelenterazine). Note: Please prepare coelenterazine stock according to Manufacturer's Recommendations at 10mM to allow for 1:1000 dilution into Loading buffer (10uM final concentration). It is critical that coelenterazine solution is prepared at room temperature and is protected from light.
- 7. Remove medium from assay plate and wash 1X with Assay Buffer.
- Add Loading buffer to assay plate (100 μL/well for 96-well plate). Incubate plate for 1.5 h at room temperature, protected from light.
- 9. Prepare ligands in assay buffer at 3x final concentration in non-binding plates. Use Buffer Only Control Wells for Background Subtraction.
- 10. Create protocol for ligand addition. Please refer to FLIPR^{1ETRA}® settings provided in Table 4. Set time course for 180 s, with ligand addition at 10 s.
- 11. After the run is complete, apply subtract bias on sample 1. Export data to analyze using the area under the curve statistic.

HOST CELL

HEK293

EXOGENOUS GENE EXPRESSION

Human PTGER3 cDNA (Accession Number: NM_198716; see CODING SEQUENCE below) and a proprietary mutant clytin photoprotein and promiscuous G protein expressed in a bicistronic vector

CODING SEQUENCE

ATG	AAG	GAG	ACC	CGG	GGC	TAC	GGA	GGG	GAT	GCC	CCC	TTC	TGC	ACC	CGC	CTC	AAC	CAC	TCC	TAC	ACA	GGC
M	K	E	T	R	G	Y	G	G	D	A	P	F	C	T	R	L	N	H	S	Y	T	G
ATG	TGG	GCG	CCC	GAG	CGT	TCC	GCC	GAG	GCG	CGG	GGC	AAC	CTC	ACG	CGC	CCT	CCA	GGG	TCT	GGC	GAG	GAT
M	W	A	P	E	R	S	A	E	A	R	G	N	L	T	R	P	P	G	S	G	E	D
TGC		TCG	GTG	TCC	GTG	GCC	TTC	CCG	ATC	ACC	ATG	CTG	CTC	ACT	GGT	TTC	GTG	GGC	AAC	GCA	CTG	GCC
C		S	V	S	V	A	F	P	I	T	M	L	L	T	G	F	V	G	N	A	L	A
		CTC L	GTG V	TCG S		AGC S	TAC Y				GAG E	AGC S				AAG K	TCC S	TTC F			TGC C	ATC I
GGC G	TGG W	CTG L	GCG A	CTC L	ACC T	GAC D	CTG L	GTC V	GGG G			CTC L	ACC T	ACC T	CCG P	GTC V	GTC V	ATC I	GTC V	GTG V		CTG L
TCC		CAG	CGT	TGG	GAG	CAC	ATC	GAC	CCG	TCG	GGG	CGG	CTC	TGC	ACC	TTT	TTC	GGG	CTG	ACC	ATG	ACT
S		Q	R	W	E	H	I	D	P	S	G	R	L	C	T	F	F	G	L	T	M	T
GTT	TTC	GGG	CTC	TCC	TCG	TTG	TTC	ATC	GCC	AGC	GCC	ATG	GCC	GTC	GAG	CGG	GCG	CTG	GCC	ATC	AGG	GCG
V	F	G	L	S	S	L	F	I	A	S	A	M	A	V	E	R	A	L	A	I	R	A
CCG	CAC	TGG	TAT	GCG	AGC	CAC	ATG	AAG	ACG	CGT	GCC	ACC	CGC	GCT	GTG		CTC	GGC	GTG	TGG	CTG	GCC
P	H	W	Y	A	S	H	M	K	T	R	A	T	R	A	V		L	G	V	W	L	A
		GCC A	TTC F	GCC A	CTG L	CTG L	CCG P	GTG V	CTG L	GGC G	GTG V	GGC G	CAG Q	TAC Y	ACC T	GTC V	CAG Q	TGG W	CCC P	GGG G	ACG T	TGG W

TGC TTC ATC AGC AGC GGG CGA GGG GGC AAC GGG ACT AGC TCT TCG CAT AAC TGG GGC AAC CTT TTC TTC G R G G N G T S S H N S Т W G N L GCC TCT GCC TTT GCC TTC CTG GGG CTC TTG GCG CTG ACA GTC ACC TTT TCC TGC AAC CTG GCC ACC ATT A S A F A F L G L L A L T V T F SCNLATI AAG GCC CTG GTG TCC CGC TGC CGG GCC AAG GCC ACG GCA TCT CAG TCC AGT GCC CAG TGG GGC CGC ATC S RCRAKATA S 0 S S А 0 R ACG ACC GAG ACG GCC ATT CAG CTT ATG GGG ATC ATG TGC GTG TCG GTC TGC TGC TGC TCC CCG CTC CTG T T E T A I O L M G I M C V L S V WSPLL С ATA ATG ATG TTG AAA ATG ATC TTC AAT CAG ACA TCA GTT GAG CAC TGC AAG ACA CAC ACG GAG AAG CAG MMLKMIF N Q T S V Ε Η Ι С K Т Η Т E K 0 AAA GAA TGC AAC TTC TTC TTA ATA GCT GTT CGC CTG GCT TCA CTG AAC CAG ATC TTG GAT CCT TGG GTT K E C N F F L I A V R L A S L N O I L D P W V TAC CTG CTG TTA AGA AAG ATC CTT CTT CGA AAG TTT TGC CAG ATG AGA AAA AGA AGA CTC AGA GAG CAA L R K I L L R K F C O M R K R R L R E L L 0 GAG GAA TTT TGG GGA AAT TGA E E F W G N Stp

RELATED PRODUCTS

Product Number	Description
HTSHEK-1L	ChemiBrite™ HEK stable cell line (control cells)
HTSHEK-3L	ChemiBrite™ HEK Gαqi stable cell line (control cells)
HTS185L	ChemiBrite™ HEK stable EP2 Prostanoid Receptor Cell Line
HTS142L	ChemiBrite™ HEK stable EP4 Prostanoid Receptor Cell Line
HTS081L	ChemiBrite™ HEK stable TP Prostanoid Receptor Cell Line
HTS091L	ChemiBrite™ HEK stable DP Prostanoid Receptor Cell Line
HTS093L	ChemiBrite™ HEK stable FP Prostanoid Receptor Cell Line
HTS092RTA	Ready-to-Assay ™ EP3 Prostanoid receptor frozen cells
HTS092M	ChemiScreen™ EP3 Prostanoid receptor Membrane Prep
HTSHEK-1L	ChemiBrite™ HEK stable cell line (control cells)

REFERENCES

- 1. Kotani M *et al.* (1995) Molecular cloning and expression of multiple isoforms of human prostaglandin E receptor EP₃ subtype generated by alternative messenger RNA splicing: multiple second messenger systems and tissue-specific distributions. *Mol Pharmacol.* 48: 869-879.
- 2. Kotani M *et al.* (1997) Structural Organization of the Human Prostaglandin EP₃ Receptor Subtype Gene (PTGER3). *Genomics* 40: 425-434
- 3. Kunikata T *et al.* (2005) Suppression of allergic inflammation by the prostaglandin E receptor subtype EP₃. *Nat. Immunol.* 6: 524-531.
- 4. Narumiya S and FitzGerald GA (2001) Genetic and pharmacological analysis of prostanoid receptor function. *J. Clin. Invest.* 108: 25-30.
- 5. Ushikubi F *et al.* (1998) Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP₃. *Nature* 395: 281-284.

FOR RESEARCH USE ONLY; NOT FOR USE IN DIAGNOSTIC PROCEDURES. NOT FOR HUMAN OR ANIMAL CONSUMPTION

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

No part of these works may be reproduced in any form without permission in writing.

Limited Use Label License Agreement

In addition to the General Terms & Conditions of Sale for Products and Services section, this Product is subject to Limited Use Label License Agreement. Please go to <u>https://www.eurofinsdiscoveryservices.com/cms/cms-content/misc/legal-disclaimer/</u> for more information.

Eurofins Pharma Bioanalytics Services US Inc. is an independent member of Eurofins Discovery Services