

PRODUCT DATASHEET

ChemiScreen™ CCR1 Chemokine Receptor Stable Cell Line

CATALOG NUMBER: HTS005C

CONTENTS: 2 vials of mycoplasma-free cells, 1 mL per vial.

STORAGE: Vials are to be stored in liquid N₂.

BACKGROUND

ChemiScreen cell lines are constructed in the Chem-1 host, which supports high levels of functional receptor expression on the cell surface. Chem-1 cells contain high endogenous levels of $G\alpha 15$, a promiscuous G protein, allowing most receptors to couple to the calcium signaling pathway.

CCR1 is a GPCR that binds to a variety of CC ligands, including MIP-1 α , RANTES, MCP-3, HCC-1, HCC-2, HCC-4, and MPIF-1 (Olson and Ley, 2002). Lymphocytes, macrophages, dendritic cells, and GM-CSF-activated neutrophils express CCR1 (Kaufmann *et al.*, 2001; Cheng *et al.*, 2001). Two selective, non-peptide small molecule antagonists of CCR1, BX-471 and CP-481,715, have been synthesized (Gladue *et al.*, 2003; Liang *et al.*, 2000). Pharmacological and genetic targeting of CCR1, either alone or in combination with cyclosporin A, reduces cardiac and renal allograft rejection (Gao *et al.*, 2000; Horuk *et al.*, 2001a; Horuk *et al.*, 2001b), allergic encephalomyelitis (Liang *et al.*, 2000), and renal fibrosis (Anders *et al.*, 2002) in experimental models. Cloned human CCR1-expressing cell line is made in the Chem-1 host, which supports high levels of recombinant CCR1 expression on the cell surface and contains high levels of the promiscuous G protein G α 15 to couple the receptor to the calcium signaling pathway. Thus, the cell line is an ideal tool for screening for antagonists of interactions between CCR1 and its ligands.

USE RESTRICTIONS

Please see Limited Use Label License Agreement (Label License Agreement) for further details.

WARNINGS

For Research Use Only; Not for Use in Diagnostic Procedures Not for Animal or Human Consumption

GMO

This product contains genetically modified organisms.
Este producto contiene organismos genéticamente modificados.
Questo prodotto contiene degli organismi geneticamente modificati.
Dieses Produkt enthält genetisch modifizierte Organismen.
Ce produit contient organismes génétiquement des modifiés.
Dit product bevat genetisch gewijzigde organismen.
Tämä tuote sisältää geneettisesti muutettuja organismeja.
Denna produkt innehåller genetiskt ändrade organismer.

APPLICATIONS

Calcium Flux Fluorescence Assay, Ligand Binding Assays

APPLICATION DATA

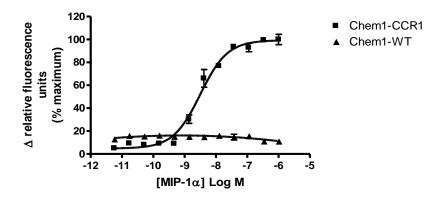


Figure 1. Representative data for activation of CCR1 receptor stably expressed in Chem-1 cells induced by MIP-1α using a fluorescent calcium flux assay. CCR1-expressing Chem-1 cells were seeded at 50,000 cells per well into a 96-well plate, and the following day the cells were loaded with a fluorescent calcium indicator. Calcium flux in response to the indicated ligand with a final concentration of 0.5% DMSO was determined on a Molecular Devices FLIPR TETRA® with ICCD camera. Maximal fluorescence signal obtained in this experiment was 15,000 RLU. Similarly parental cells (catalog #: HTSCHEM-1) were tested to determine the specificity of the resulting signal.

Table 1. EC₅₀ value of CCR1-expressing Chem-1 cells.

LIGAND	ASSAY	POTENCY EC ₅₀ (nM) REFERENCE	
MIP-1α	Calcium Flux - Fluorescend	ce 3.2	Eurofins Internal Data	
* The cell line was	tested and found to have equ	uivalent EC ₅₀ and signal a	at 1, 3 and 6 weeks of continuous cultur	re by

calcium flux fluorescence. The Z' value, as defined with response to 0.3μM MIP-1α, was 0.7.

CELL CULTURE

Table 2. Recommended Cell Culture Reagents (not provided)

Description	Component	Concentration	Supplier and Product Number
Basal Medium	DMEM high glucose Medium (4.5g/L)	-	Hyclone: SH30022
	Fetal Bovine Serum (FBS)	10%	Hyclone: SH30070.03
	Non-Essential Amino Acids (NEAA)	1X	Hyclone: SH30238.01
	HEPES	1X	Hyclone: SH30237.01
Selection Medium	Basal Medium (see above)	-	
	Geneticin (G418)	250 μg/ml	Invivogen: ant-gn-5
Dissociation	Sterile PBS	-	Hyclone: SH30028.03
	0.25% Trypsin-EDTA	-	Hyclone: SH30042.01
CryoMedium	Basal Medium (see above)	40%	
	Fetal Bovine Serum (FBS)	50%	Hyclone: SH30070.03
	Dimethyl Sulfoxide (DMSO)	10%	Sigma: D2650

Discovery Services

Cell handling

- 1. Upon receipt, directly place cells in liquid nitrogen storage. Consistent cryopreservation is essential for culture integrity.
- 2. Prepare Basal Medium. Prepare 37°C Water Bath. Thaw cells rapidly by removing from liquid nitrogen, and immediately immersing in a 37°C water bath, until 90% thawed. Immediately sterilize the exterior of the vial with 70% ethanol.
- 3. Add vial contents to 15 mL Basal Medium in T75 Tissue Culture Treated Flask. Gently swirl flask and place in a humidified, tissue culture incubator, 37°C, 5% CO₂.
- 4. 18-24 Hours Post–Thaw, all live cells should be attached. Viability of the cells is expected to be 60-90%, At this time, exchange Basal Medium with Selection Medium.
- 5. When cells are approximately 80% confluent, passage the cells. It is suggested that user expand culture to create >20 vial Master Cell Bank at low passage number. *Cells should be maintained at less than 80% confluency for optimal assay results.*
- 6. Cell Dissociation: Aspirate Culture Medium. Gently wash with 1x Volume PBS. Add 0.1x Volume Warm Trypsin-EDTA. Incubate 4 min, 37°C, until cells dislodge. *If cells do not round up, place in 37°C incubator for additional 2 min*. Neutralize Trypsin and collect cells in 1x Volume Basal Medium.
- 7. Seed Cells for expansion of culture. It is recommended that cell lines are passaged at least once before use in assays.

Table 3. Cell Culture Seeding Suggestions: User should define based on research needs.

Flask Size (cm ²)	Volume (mL)	Total Cell Number (x10 ⁶)	Growth Period (hrs)
T75	15	5.0	24
T75	15	2.0	48
T75	15	0.45	72

ASSAY SETUP

Fluorescence

Table 4. Settings for FLIPR TETRA® with ICCD camera option

Option	Setting
Read Mode	Fluorescence
Ex/Em	Ex470_495 / Em515_575
Camera Gain	2000
Gate Open	6 %
Exposure Time	0.53
Read Interval	1s
Dispense Volume	50 μl (25 μl for 384-well)
Dispense Height	95 µl (50 µl for 384-well)
Dispense Speed	50 μl/sec
Expel Volume	0 μΙ
Analysis	Subtract Bias Sample 1

Table 5. Assay Materials (Not provided)

Description	Supplier and Product Number
HBSS	Invitrogen: 14025
HEPES 1M Stock	EMD Millipore: TMS-003-C
Probenicid	Sigma: P8761
Quest Fluo-8 [™] , AM	AAT Bioquest: 21080
MIP-1 α ligand	Peprotech: 300-08
Non-Binding 96/384 well Plates (for ligand prep)	Corning: 3605/ 3574
Black (clear Bottom) cell assay plates	Corning: 3904/ 3712

Assay Protocol – Fluorescence

- Dissociate Culture as Recommended. Collect in Basal Medium. Document Cell Count and Viability
- 2. Centrifuge the cell suspension at 190 x g for six min
- 3. Remove supernatant. Gently resuspend the cell pellet in Basal Medium. *It is suggested that end user optimize cell plating based on individual formats.* (Default: Resuspend in volume to achieve 5x10⁵cells/ml (i.e, if collected 5e6 TC, ^{5e6}/_{5e5/ml} =10 mL volume)
- 4. Seed cell suspension into black, clear bottom plate (100 μL/well for 96-well plate). When seeding is complete, place the assay plate at room temperature for 30 min.
- 5. Move assay plate to a humidified 37°C 5% CO₂ incubator for 18-24 h.
- 6. Next day, prepare Assay buffer (HBSS, 20mM HEPES, 2.5 mM Probenicid, pH 7.4) and Loading buffer (Assay buffer with 5 mM Fluo8 Dye). *Note: Please prepare Fluo8 stock according to Manufacturer's Recommendations*
- 7. Remove medium from assay plate and wash 1X with Assay Buffer.
- 8. Add Loading buffer to assay plate (100 μL/well for 96-well plate). Incubate plate for 1.5 h at room temperature, protected from light.
- 9. Prepare ligands in assay buffer at 3x final concentration in non-binding plates. Use Buffer Only Control Wells for Background Subtraction.
- 10. Create protocol for ligand addition. Please refer to FLIPR^{TETRA}® settings provided in Table 2. Set time course for 180 s, with ligand addition at 10 s.
- 11. After the run is complete, apply subtract bias on sample 1. We recommend using Negative Control Correction with Buffer Only Wells. Export data to according to research needs. For most Calcium Flux analysis using Export of Max Signal to end of run is sufficient.

HOST CELL

Chem-1, an adherent cell line expressing the promiscuous G-protein, Gα15.

EXOGENOUS GENE EXPRESSION

Human CCR1 cDNA (Accession Number: L09230)

RELATED PRODUCTS

Product Number	Description
HTSCHEM-1	ChemiScreen™ Chem-1 Parental Cell Line (control cells)
HTS005M	ChemiScreen™ CCR1 Chemokine family receptor membrane prep

Discovery Services

REFERENCES

- 1. Anders, H.J., et al. (2002) A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J. Clin. Invest. 109: 251-9.
- 2. Cheng, S.S., *et al.* (2001) Granulocyte-macrophage colony stimulation factor up-regulates CCR1 in human neutrophils. *J. Immunol.* 166: 1178-84.
- 3. Gao, W., et al. (2000) Targeting of the chemokine recpetor CCR1 suppresses development of acute and chronic cardiac allograft rejection. *J. Clin. Invest.* 105: 35-44.
- 4. Gladue, R.P., et al. (2003) CP-481,715, a potent and selective CCR1 antagonist with potential therapeutic implications for inflammatory diseases. *J. Biol. Chem.* 278: 40473-80.
- Horuk, R., et al. (2001a) CCR1-specific non-peptide antagonist: efficacy in a rabbit allograft rejection model. Immunol. Lett. 76: 193-201.
- 6. Horuk, R., *et al.* (2001b) A non-peptide functional antagonist of the CCR1 chemokine receptor is effective in rat heart transplant rejection. *J. Biol. Chem.* 276: 4199-4204.
- Kaufmann, A., et al. (2001) Increase of CCR1 and CCR5 expression and enhanced functional response to MIP-1 alpha during differentiation of human moncytes to macrophages. J. Leukoc. Biol. 69: 248-52.
- 8. Liang, M., *et al.* (2000) Identification and characterization of a potent, selective, and orally active antagonist of the CC chemokine receptor-1. *J. Biol. Chem.* 275: 19000-8.
- 9. Olson, T.S. and Ley, K. (2002) Chemokines and chemokine receptors in leukocyte trafficking. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 283: R7-R28

FOR RESEARCH USE ONLY; NOT FOR USE IN DIAGNOSTIC PROCEDURES. NOT FOR HUMAN OR ANIMAL CONSUMPTION

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

No part of these works may be reproduced in any form without permission in writing.

Limited Use Label License Agreement

In addition to the General Terms & Conditions of Sale for Products and Services section, this Product is subject to Limited Use Label License Agreement. Please go to https://www.eurofinsdiscoveryservices.com/cms/cms-content/misc/legal-disclaimer/ for more information.

Eurofins Pharma Bioanalytics Services US Inc. is an independent member of Eurofins Discovery Services