

Cell-based Receptor Tyrosine Kinase Screening Reloaded

Development of a new cellular assay system for a target protein so far resistent against HTS formats

Benjamin Bader

SBS-meeting Lille 2009

- Rationale for cell-based screening of RTKs
- Some project history
- The DiscoveRx workplan
- Assay development data
- Assay transfer, adaptation and optimization
- Summary and Outlook

Receptor Tyrosine Kinases

RTKs play important roles in fundamental cellular processes like

- proliferation,
- differentiation,
- migration,
- metabolism
- survival

General scheme of activation and signal transduction of RTKs

Adapted from: Schlessinger, 2000, Cell 103, 211-225 SBS 2009, Bader, page 4

Advantages of a cell-based RTK assay in comparison to enzymatic kinase assays

- full length protein, not only kinase domain
- physiological *membrane environment* of RTK
- *native substrate* compared to peptides in enzyme assays
- the RTK is present in its *inactive state* when compounds are added
- possibility to find *prodrugs* which can be activated inside the cell
- *inhibitors of ligand binding site* can be found

Chance to find new inhibitors with different binding modes

Project history

RTK target protein has been screened using enzymatic assays

- considerable amount of IC50 hits with activity in cellular assays
- but: no lead structure identified

Cellular ELISA assay has been set-up as secondary assay

Cellular autophosphorylation ELISA in 384 well

Bayer HealthCare Bayer Schering Pharma

Project history

RTK target protein has been screened using enzymatic assays

- considerable amount of IC50 hits with activity in cellular assays
- but: no lead structure identified

Cellular ELISA assay has been set-up as secondary assay

- worked well in 384 well
- but: too complicated for full HTS
- and: ELISA in 1536 well ?!?!

Homogenous formats were developed (HTRF)

HTRF detection

Membrane assay:

- Homogenous format possible
- Strong ligand independent signal

Intact cells assay:

- S/B too low for 384 well assay
- Too many cells needed
- protocol contains several wash steps

Project history

RTK target protein has been screened using enzymatic assays

- considerable amount of IC50 hits with activity in cellular assays
- but: no lead structure identified

Cellular ELISA assay has been set-up as secondary assay

Homogenous formats were developed (HTRF)

New option: DiscoveRx

- worked well in 384 well
- but: too complicated for full HTS
- and: ELISA in 1536 well ?!?!
- Membranes feasible in 384 well
- but: ligand independent signal was not accepted by project team

Concept for RTK activation assay (DiscoveRx):

needs one cell expressing both:

- RTK tagged with ProLink peptide
- pTyrosine binding partner for RTK as EAfusion: e.g. SH2-domain

chemiluminescent signal

2

SH₂

EA

The DiscoveRx workplan

Aim: build a PathHunter protein-protein interaction assay for monitoring autophosphorylation of the target RTK through the interaction of an SH2 binding domain

The data – Milestone 2

Aim: Find suitable RTK + SH2 pair and show functionality in the EFC-assay

- First of all: this was the hardest part
- More than 3 different SH2-domains were tested
- Other cell backgrounds were tested

The data – Milestone 3

Aim: Show ligand-mediated auto-phosphorylation of RTK in Western Blot

IP: α-myc IB: α-phospho-tyrosine

U2OS RTK/PTPN6

Data in line with expected outcome

Phospho-RTK-PK Expected size: 108 kDa

BSP data in CHO-cells

The data – Milestone 4

SBS 2009, Bader, page 15

The data – Milestone 4 cont.

Aim: show Z'-factor > 0.55 for whole plate 384 well assay with 10.000 cells

	mean	SD	%CV
high	424.7	22.3	5%
low	89.7	6.5	7%

S/B	4.7	
Z'F	0.74	

Assay transfer, adaptation, optimization

- 1. Does the DiscoveRx protocol work?
- 2. Can we miniaturize ?
- 3. Can we use frozen cells ?

1. Does the DiscoveRx protocol work?

Steps	Volumes (384-well)
<u>Step 1:</u> Plate Cells & Incubate Overnight @ 37⁰C	Add 20 μ L of cells in each well at a preferred density of ~10,000 cells per well. Cells should be seeded in MEME +0.1% BSA.
<u>Step 2:</u> Treat Cells @ RT	Add 5 μL of 5X concentrations of ligand made up in MEME (3-fold serial dilutions, highest final concentration = 40 μg/mL). Treat for 1 hour at room temperature.
<u>Step 3:</u> Add CL Mix @ RT	Add 12 μL of CL mix. Incubate at room temperature and in the dark for 60 minutes.
<u>Step 4:</u> Read Samples	Samples can be read on any standard luminescence plate reader.

Yes, but...

... EC50 of ligand quite high, no saturation

Bayer HealthCare Bayer Schering Pharma

2. Can we miniaturize ?

- 1. 5 µl cells (5000) into 384 SV tissue culture plates, ON 37°C
- 2. 2 µl Ligand stimulation, 60 min RT
- 3. 3 µl detection

Yes, we can...

- less signal, but similar S/B
- again EC50 of ligand too high, no saturation

3. Can we use frozen cells ?

- 1. Thaw frozen cells and dilute in MEME + 0 / 1 / 3 % FCS or OptiMEM + 1% FCS
- 2. 5 µl cells (4000) into 384 SV tissue culture plates, ON 37°C
- 3. 2 µI Ligand stimulation, 60 min RT
- 4. 3 µl detection

Yes, we can...

• Less cells in OptiMEM improves EC50

- FCS has no impact
- OptiMEM is enhancing signal and S/B

SBS 2009, Bader, page 20

Bayer HealthCare Bayer Schering Pharma 4. Optimized assay using OptiMEM

OptiMEM without additives optimal for this assay

- EC50 as expected
- Adherent cells with superior S/B

EC50 = 0.5 µg/ml

Summary and Outlook

- A cell-based, ligand inducible RTK-SH2 interaction assay was developed by DiscoveRx in an assay development project with Bayer Schering Pharma AG.
- The assay meets the requirements in terms of S/B, Z'-factor and IC50s of reference inhibitors
- The assay could be successfully miniaturized and applied to frozen cells
- Further work will aim at testing robustness in automation and 1536 well format

Acknowledgements

DiscoveRx

Edwin Haghnazari Mimi Nguyen Martine Ercken

Birgit Beyermann-Lopata Sanj Kumar Keith Olson Bayer Schering Pharma

Dagmar Zeggert-Springer

Arndt Schmitz Dieter Zopf Verena Voehringer Dirk Brohm Heike Petrul Sandra Bruder Volkhart Li

Karsten Parczyk Anke Müller-Fahrnow

